Энциклопедический словарь «EDUSPB»
Линейчатая поверхность, совокупность прямых, зависящая

Линейчатая поверхность

Лине'йчатая пове'рхность , совокупность прямых, зависящая от одного параметра; Л. п. можно описать движением прямой (образующей) по некоторой линии (направляющей). Л. п. разделяются на развёртывающиеся и косые.

  Развёртывающиеся Л. п. могут быть посредством изгибания наложены на плоскость. Любая развёртывающаяся поверхность является либо цилиндром, либо конусом, либо поверхностью, состоящей из касательных к некоторой пространственной кривой (1) (рис. 1 ). Эту кривую называют ребром возврата развёртывающейся поверхности. Плоскость P, пересекающая ребро возврата (L), образует в сечении с поверхностью кривую ABC с точкой возврата В (см. Особые точки). Ребро возврата является особой линией развёртывающейся поверхности, вдоль которой две её полости S1 и S2 касаются друг друга. Развёртывающиеся поверхности характеризуются также тем, что касательная плоскость к ним в различных точках одной и той же образующей неизменна. Отсюда следует, что совокупность всех касательных плоскостей развёртывающейся Л. п. представляет собой однопараметрическое семейство. Иначе говоря, развёртывающаяся Л. п. является огибающей однопараметрического семейства плоскостей.

  У косой Л. п. касательные плоскости в различных точках одной и той же образующей различны. При перемещении точки касания вдоль образующей касательная плоскость вращается вокруг образующей. Полный поворот касательной плоскости, когда точка касания проходит всю образующую, равен 180°. На каждой образующей имеется такая точка, что для каждой из двух частей, на которые она делит образующую, полный поворот касательной плоскости равен 90°. Эту точку (на рис. 2 — точка О) называют центром образующей. Тангенс угла между касательными плоскостями к поверхности в центре О и какой-либо другой точке O' той же образующей пропорционален расстоянию OO'. Множитель пропорциональности называется параметром распределения Л. п. Абсолютная величина полной кривизны Л. п. достигает на данной образующей наибольшего значения в центре образующей и убывает при удалении от центра по образующей. Геометрическое место центров образующих носит название линии сжатия, или стрикционной линии. Например, у геликоида — Л. п., описываемой равномерным винтовым движением прямой вокруг некоторой оси (которую движущаяся прямая пересекает под прямым углом), — линией сжатия является ось (AB на рис. 2 ). Л. п. 2-го порядка — гиперболический параболоид, однополостный гиперболоид — имеют две различные системы прямолинейных образующих (из однополостных гиперболоидов сконструирована радиомачта системы В. Г. Шухова, находящаяся в Москве на Шаболовке). Две системы прямолинейных образующих имеют только Л. п. 2-го порядка.

  Изгибаемые друг на друга Л. п. можно катить одну по другой так, что в процессе качения они будут иметь общую образующую. На этом основано применение Л. п. в теории механизмов. См. также Линейчатая геометрия.

  Лит.: Фиников С. П., Теория поверхностей, М. — Л., 1934; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969.

  Э. Г. Позняк.

Большая Советская Энциклопедия (ЛИ)

Рис. 1 к ст. Линейчатая поверхность.

Большая 
Советская Энциклопедия (ЛИ)

Рис. 2 к ст. Линейчатая поверхность.

источник: Большая Советская Энциклопедия



Полезные сайты:

Права человека, история права Pravobooks.ru
Занимательная география World-Tours.ru
Фотографии онлайн Photogallerys.ru
Предсказания Astrosearch.ru
Энциклопедия философии Филослов.ру


просмотров: 293
Search Results from Ebay.US* DE* FR* UK
2007 Copyright © EduSPB.ru Мобильная Версия v.2015 | PeterLife и компания
Пользовательское соглашение использование материалов сайта разрешено с активной ссылкой на сайт
Угостить администратора сайта, чашечкой кофе *https://paypal.me/peterlife
Rambler's Top100 Яндекс цитирования Яндекс.Метрика